Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol.

نویسندگان

  • Deepak K Sharma
  • Jennifer C Brown
  • Amit Choudhury
  • Timothy E Peterson
  • Eileen Holicky
  • David L Marks
  • Robert Simari
  • Robert G Parton
  • Richard E Pagano
چکیده

Internalization of some plasma membrane constituents, bacterial toxins, and viruses occurs via caveolae; however, the factors that regulate caveolar internalization are still unclear. Here, we demonstrate that a brief treatment of cultured cells with natural or synthetic glycosphingolipids (GSLs) or elevation of cholesterol (either by acute treatment with mbeta-cyclodextrin/cholesterol or by alteration of growth conditions) dramatically stimulates caveolar endocytosis with little or no effect on other endocytic mechanisms. These treatments also stimulated the movement of GFP-labeled vesicles in cells transfected with caveolin-1-GFP and reduced the number of surface-connected caveolae seen by electron microscopy. In contrast, overexpression of caveolin-1 decreased caveolar uptake, but treatment with GSLs reversed this effect and stimulated caveolar endocytosis. Stimulation of caveolar endocytosis did not occur using ceramide or phosphatidylcholine and was not due to GSL degradation because similar results were obtained using a nonhydrolyzable GSL analog. Stimulated caveolar endocytosis required src kinase and PKC-alpha activity as shown by i) use of pharmacological inhibitors, ii) expression of kinase inactive src or dominant negative PKCalpha, and iii) stimulation of src kinase activity upon addition of GSLs or cholesterol. These results suggest that caveolar endocytosis is regulated by a balance of caveolin-1, cholesterol, and GSLs at the plasma membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective Stimulation of Caveolar Endocytosis by Glycosphingolipids and Cholesterol□V

Internalization of some plasma membrane constituents, bacterial toxins, and viruses occurs via caveolae; however, the factors that regulate caveolar internalization are still unclear. Here, we demonstrate that a brief treatment of cultured cells with natural or synthetic glycosphingolipids (GSLs) or elevation of cholesterol (either by acute treatment with m cyclodextrin/cholesterol or by altera...

متن کامل

Inhibition of caveolar uptake, SV40 infection, and β1-integrin signaling by a nonnatural glycosphingolipid stereoisomer

Caveolar endocytosis is an important mechanism for the uptake of certain pathogens and toxins and also plays a role in the internalization of some plasma membrane (PM) lipids and proteins. However, the regulation of caveolar endocytosis is not well understood. We previously demonstrated that caveolar endocytosis and beta1-integrin signaling are stimulated by exogenous glycosphingolipids (GSLs)....

متن کامل

Caveosomes and endocytosis of lipid rafts.

Endocytosis of various endogenous plasma membrane molecules, including signalling receptors, glycosphingolipids and glycosylphosphatidylinositol (GPI)-linked proteins, occurs in the absence of functional clathrin-coated pits. Most of these molecules are found in biochemically defined lipid rafts, which suggests that at least some clathrin-independent endocytosis may be raft specific or raft med...

متن کامل

Selective caveolin-1-dependent endocytosis of glycosphingolipids.

We studied the endocytosis of fluorescent glycosphingolipid (GSL) analogs in various cell types using pathway-specific inhibitors and colocalization studies with endocytic markers and DsRed caveolin-1 (cav-1). Based on inhibitor studies, all GSLs tested were internalized predominantly (>80%) by a clathrin-independent, caveolar-related mechanism, regardless of cell type. In addition, fluorescent...

متن کامل

Caveolae as a target for Phoneutria nigriventer spider venom.

An important transcellular transport mechanism in the blood-brain barrier (BBB) involves caveolae, which are specialized delta-shaped domains of the endothelial plasma membrane that are rich in cholesterol, glycosphingolipids and the scaffolding protein Caveolina-1 (Cav-1). In this work, we investigated whether the increase in endocytosis and transendothelial vesicular trafficking in rat cerebe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 15 7  شماره 

صفحات  -

تاریخ انتشار 2004